Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating

نویسندگان

  • Minjeong Kim
  • Myoung Gil Choi
  • Ho Won Ra
  • Seung Bin Park
  • Yong-Joo Kim
  • Kyubock Lee
چکیده

The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Hydroxyapatite Coating on Ti6Al4V Cylinders by Combination of Alkali-Heat Treatments and Biomimetic Method

Biomimetic method was used to apply hydroxyapatite (HA) coating onto Ti6Al4V cylinders. This process is a physicochemical method in which a substrate is soaked in a solution simulating the physiological conditions, for a period of time enough to form a desirable layer of the calcium phosphate on the substrate. In the present study, specimens were soaked in 5, 10 M solutions of NaOH at temperatu...

متن کامل

A novel tripolymer coating demonstrating the synergistic effect of chitosan, collagen type 1 and hyaluronic acid on osteogenic differentiation of human bone marrow derived mesenchymal stem cells.

The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marro...

متن کامل

Surface Activation of NiTi Alloy by Using Electrochemical Process for Biomimetic Deposition of Hydroxyapatite Coating (TECHNICAL NOTE)

Electrochemical depositions of calcium phosphate (Ca-P) film on NiTi alloy in concentrated simulated body flood (SBF×5) were carried out by cathodic polarization. The Ca-P layer was successfully deposited on Ni-Ti alloy substrate under 10mA/cm2 current density for 2 hours at room temperature. Then, in order to investigate the bioactivity of the pre-calcified samples, they were immersed in SBF f...

متن کامل

Studies of a Tripodal Biomimetic Siderophore Analog: An Efficient Encapsulation for Fe(III) Ion

A new tris-(2-aminoethyl)amine (TREN) capped tripodal Schiff base ligand has been developed by mimicking structural features of a natural siderophore, Bacillibactin, by substituting the catechol units with salicylaldehyde and employing amino acid as spacer. Synthesis of the ligand N-[2-[bis[2-[[2-[(2-hydroxyphenyl)methylamino]acetyl] amino]ethyl]amino]ethyl]-2-[(2-hydroxyphenyl)methylamino]...

متن کامل

Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V

In this study, time of calcium phosphate formation on Ti6Al4V alloy with or without alkali and heat treatments was investigated. Specimens were soaked in 0, 5, 10 M solutions of NaOH at temperatures of 60 or 80 °C for 24, 72 h. Their surfaces were characterized using scanning electron microscopy and thin film X-ray diffraction. It was found that optimum condition is 72h soaking in 5 M NaOH in 8...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018